Группа американских материаловедов под руководством Гана Чэня (Gang Chen) из Массачусетского технологического института синтезировала новый полимерный материал, который обладает повышенной теплопроводностью за счет увеличения силы не только внутримолекулярного взаимодействия, как в предыдущих работах, но и между отдельными полимерными молекулами. Об этом пишет издание N+1 со ссылкой на Science Advances. Основу материала составил поли(3-гексилтиофен), в котором сопряженные двойные связи обеспечивают внутримолекулярные связи, а взаимодействия между ?-орбиталями ароматических элементов разных молекул приводит к образованию между ними нековалентных связей, в результате чего плоские ароматические пятичленные кольца складываются в стопки, образуя внутри материала небольшие упорядоченные области.Синтез тонких полимерных пленок нанометровой толщины ученые проводили с использованием окислительного химического осаждения из газовой фазы, в результате которого сначала получалась молекула с плоской хиноидной структурой, в которой ароматические элементы связаны двойной связью, а после промывания метанолом — чистый полимерный материал без неорганических ионов, в которых между тиофеновыми элементами уже нет двойной связи. Этот процесс уменьшает шероховатость пленок, увеличивает подвижность отдельных элементов внутри структуры (сохраняя при этом упорядоченные зоны) и повышает теплопроводность молекулы.Синтезированный полимер действительно оказался теплопроводящими, при этом за счет правильного подбора температуры полимеризации ученым удалось добиться получения полимерного материала с коэффициентом теплопроводности 2,2 ватта на метр на градус при комнатной температуре, что примерно на порядок выше обычных для пластмасс показателей. Авторы работы отмечают, что к повышению теплопроводности приводит не механическая обработка или микроструктурирование уже полученного материала (как это делается обычно), а управление системой сопряженных двойных связей и образованием упорядоченных межмолекулярных структур в процессе синтеза.С учетом того, что многие подобные полимеры обладают довольно высоким коэффициентом электропроводности (например, промежуточный полимер с хиноидной структурой имел электропроводность более 4 сименсов на сантиметр), ученые считают, что в будущем именно подобные полимерные материалы, способные одновременно проводить и электрический ток, и тепло, станут основой для гибких полимерных электронных и оптоэлектронных устройств с более эффективным управлением тепловым режимом.Эффективным способом ускорить процесс отвода тепла при использовании непроводящих полимерных материалов может быть не только подбор правильного химического состава соединения, но и придание ему необходимой микростурктуры. Так, американские исследователи получили полусинтетическую ткань на основе полиэтилена, которая за счет системы нано- и микрометровых пор способна рассеивать тепло человеческого тела лучше, чем другие натуральные и синтетические материалы и может оказывать охлаждающий эффект.
По материалам Plastics.ru
Все новости индустрии
|